3.126 \(\int \frac{\sec ^5(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=183 \[ -\frac{15 \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{2 \sqrt{2} a^{3/2} d}-\frac{13 \tan (c+d x) \sqrt{a \sec (c+d x)+a}}{10 a^2 d}-\frac{\tan (c+d x) \sec ^3(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}+\frac{9 \tan (c+d x) \sec ^2(c+d x)}{10 a d \sqrt{a \sec (c+d x)+a}}+\frac{31 \tan (c+d x)}{5 a d \sqrt{a \sec (c+d x)+a}} \]

[Out]

(-15*ArcTan[(Sqrt[a]*Tan[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(2*Sqrt[2]*a^(3/2)*d) - (Sec[c + d*x]^
3*Tan[c + d*x])/(2*d*(a + a*Sec[c + d*x])^(3/2)) + (31*Tan[c + d*x])/(5*a*d*Sqrt[a + a*Sec[c + d*x]]) + (9*Sec
[c + d*x]^2*Tan[c + d*x])/(10*a*d*Sqrt[a + a*Sec[c + d*x]]) - (13*Sqrt[a + a*Sec[c + d*x]]*Tan[c + d*x])/(10*a
^2*d)

________________________________________________________________________________________

Rubi [A]  time = 0.424642, antiderivative size = 183, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.261, Rules used = {3816, 4021, 4010, 4001, 3795, 203} \[ -\frac{15 \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{2 \sqrt{2} a^{3/2} d}-\frac{13 \tan (c+d x) \sqrt{a \sec (c+d x)+a}}{10 a^2 d}-\frac{\tan (c+d x) \sec ^3(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}+\frac{9 \tan (c+d x) \sec ^2(c+d x)}{10 a d \sqrt{a \sec (c+d x)+a}}+\frac{31 \tan (c+d x)}{5 a d \sqrt{a \sec (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^5/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

(-15*ArcTan[(Sqrt[a]*Tan[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(2*Sqrt[2]*a^(3/2)*d) - (Sec[c + d*x]^
3*Tan[c + d*x])/(2*d*(a + a*Sec[c + d*x])^(3/2)) + (31*Tan[c + d*x])/(5*a*d*Sqrt[a + a*Sec[c + d*x]]) + (9*Sec
[c + d*x]^2*Tan[c + d*x])/(10*a*d*Sqrt[a + a*Sec[c + d*x]]) - (13*Sqrt[a + a*Sec[c + d*x]]*Tan[c + d*x])/(10*a
^2*d)

Rule 3816

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(d^2*
Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n - 2))/(f*(2*m + 1)), x] + Dist[d^2/(a*b*(2*m + 1)), In
t[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 2)*(b*(n - 2) + a*(m - n + 2)*Csc[e + f*x]), x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -1] && GtQ[n, 2] && (IntegersQ[2*m, 2*n] || IntegerQ[m]
)

Rule 4021

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> -Simp[(B*d*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n - 1))/(f*(m + n
)), x] + Dist[d/(b*(m + n)), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n - 1)*Simp[b*B*(n - 1) + (A*b*(m +
n) + a*B*m)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b
^2, 0] && GtQ[n, 1]

Rule 4010

Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_
)), x_Symbol] :> -Simp[(B*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1))/(b*f*(m + 2)), x] + Dist[1/(b*(m + 2)), I
nt[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[b*B*(m + 1) + (A*b*(m + 2) - a*B)*Csc[e + f*x], x], x], x] /; Free
Q[{a, b, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] &&  !LtQ[m, -1]

Rule 4001

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> -Simp[(B*Cot[e + f*x]*(a + b*Csc[e + f*x])^m)/(f*(m + 1)), x] + Dist[(a*B*m + A*b*(m + 1))/(b*(
m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m, x], x] /; FreeQ[{a, b, A, B, e, f, m}, x] && NeQ[A*b - a*B,
0] && EqQ[a^2 - b^2, 0] && NeQ[a*B*m + A*b*(m + 1), 0] &&  !LtQ[m, -2^(-1)]

Rule 3795

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2/f, Subst[Int[1/(2
*a + x^2), x], x, (b*Cot[e + f*x])/Sqrt[a + b*Csc[e + f*x]]], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0
]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\sec ^5(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx &=-\frac{\sec ^3(c+d x) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}-\frac{\int \frac{\sec ^3(c+d x) \left (3 a-\frac{9}{2} a \sec (c+d x)\right )}{\sqrt{a+a \sec (c+d x)}} \, dx}{2 a^2}\\ &=-\frac{\sec ^3(c+d x) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac{9 \sec ^2(c+d x) \tan (c+d x)}{10 a d \sqrt{a+a \sec (c+d x)}}-\frac{\int \frac{\sec ^2(c+d x) \left (-9 a^2+\frac{39}{4} a^2 \sec (c+d x)\right )}{\sqrt{a+a \sec (c+d x)}} \, dx}{5 a^3}\\ &=-\frac{\sec ^3(c+d x) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac{9 \sec ^2(c+d x) \tan (c+d x)}{10 a d \sqrt{a+a \sec (c+d x)}}-\frac{13 \sqrt{a+a \sec (c+d x)} \tan (c+d x)}{10 a^2 d}-\frac{2 \int \frac{\sec (c+d x) \left (\frac{39 a^3}{8}-\frac{93}{4} a^3 \sec (c+d x)\right )}{\sqrt{a+a \sec (c+d x)}} \, dx}{15 a^4}\\ &=-\frac{\sec ^3(c+d x) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac{31 \tan (c+d x)}{5 a d \sqrt{a+a \sec (c+d x)}}+\frac{9 \sec ^2(c+d x) \tan (c+d x)}{10 a d \sqrt{a+a \sec (c+d x)}}-\frac{13 \sqrt{a+a \sec (c+d x)} \tan (c+d x)}{10 a^2 d}-\frac{15 \int \frac{\sec (c+d x)}{\sqrt{a+a \sec (c+d x)}} \, dx}{4 a}\\ &=-\frac{\sec ^3(c+d x) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac{31 \tan (c+d x)}{5 a d \sqrt{a+a \sec (c+d x)}}+\frac{9 \sec ^2(c+d x) \tan (c+d x)}{10 a d \sqrt{a+a \sec (c+d x)}}-\frac{13 \sqrt{a+a \sec (c+d x)} \tan (c+d x)}{10 a^2 d}+\frac{15 \operatorname{Subst}\left (\int \frac{1}{2 a+x^2} \, dx,x,-\frac{a \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{2 a d}\\ &=-\frac{15 \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{2} \sqrt{a+a \sec (c+d x)}}\right )}{2 \sqrt{2} a^{3/2} d}-\frac{\sec ^3(c+d x) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac{31 \tan (c+d x)}{5 a d \sqrt{a+a \sec (c+d x)}}+\frac{9 \sec ^2(c+d x) \tan (c+d x)}{10 a d \sqrt{a+a \sec (c+d x)}}-\frac{13 \sqrt{a+a \sec (c+d x)} \tan (c+d x)}{10 a^2 d}\\ \end{align*}

Mathematica [A]  time = 0.43402, size = 124, normalized size = 0.68 \[ \frac{\tan (c+d x) \left (2 \sqrt{1-\sec (c+d x)} \left (4 \sec ^3(c+d x)-4 \sec ^2(c+d x)+36 \sec (c+d x)+49\right )-75 \sqrt{2} (\sec (c+d x)+1) \tanh ^{-1}\left (\frac{\sqrt{1-\sec (c+d x)}}{\sqrt{2}}\right )\right )}{20 d \sqrt{1-\sec (c+d x)} (a (\sec (c+d x)+1))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^5/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

((-75*Sqrt[2]*ArcTanh[Sqrt[1 - Sec[c + d*x]]/Sqrt[2]]*(1 + Sec[c + d*x]) + 2*Sqrt[1 - Sec[c + d*x]]*(49 + 36*S
ec[c + d*x] - 4*Sec[c + d*x]^2 + 4*Sec[c + d*x]^3))*Tan[c + d*x])/(20*d*Sqrt[1 - Sec[c + d*x]]*(a*(1 + Sec[c +
 d*x]))^(3/2))

________________________________________________________________________________________

Maple [B]  time = 0.188, size = 417, normalized size = 2.3 \begin{align*}{\frac{1}{80\,d{a}^{2} \left ( \sin \left ( dx+c \right ) \right ) ^{3} \left ( \cos \left ( dx+c \right ) \right ) ^{2}} \left ( 75\,\ln \left ({\frac{1}{\sin \left ( dx+c \right ) } \left ( \sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\sin \left ( dx+c \right ) -\cos \left ( dx+c \right ) +1 \right ) } \right ) \left ( -2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}} \right ) ^{5/2}\sin \left ( dx+c \right ) \left ( \cos \left ( dx+c \right ) \right ) ^{4}+150\,\ln \left ({\frac{1}{\sin \left ( dx+c \right ) } \left ( \sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\sin \left ( dx+c \right ) -\cos \left ( dx+c \right ) +1 \right ) } \right ) \left ( -2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}} \right ) ^{5/2}\sin \left ( dx+c \right ) \left ( \cos \left ( dx+c \right ) \right ) ^{3}-150\,\ln \left ({\frac{1}{\sin \left ( dx+c \right ) } \left ( \sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\sin \left ( dx+c \right ) -\cos \left ( dx+c \right ) +1 \right ) } \right ) \left ( -2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}} \right ) ^{5/2}\sin \left ( dx+c \right ) \cos \left ( dx+c \right ) -75\,\ln \left ({\frac{1}{\sin \left ( dx+c \right ) } \left ( \sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\sin \left ( dx+c \right ) -\cos \left ( dx+c \right ) +1 \right ) } \right ) \left ( -2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}} \right ) ^{5/2}\sin \left ( dx+c \right ) +392\, \left ( \cos \left ( dx+c \right ) \right ) ^{5}-496\, \left ( \cos \left ( dx+c \right ) \right ) ^{4}-216\, \left ( \cos \left ( dx+c \right ) \right ) ^{3}+384\, \left ( \cos \left ( dx+c \right ) \right ) ^{2}-96\,\cos \left ( dx+c \right ) +32 \right ) \sqrt{{\frac{a \left ( \cos \left ( dx+c \right ) +1 \right ) }{\cos \left ( dx+c \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^5/(a+a*sec(d*x+c))^(3/2),x)

[Out]

1/80/d/a^2*(75*ln(((-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-cos(d*x+c)+1)/sin(d*x+c))*(-2*cos(d*x+c)/(c
os(d*x+c)+1))^(5/2)*sin(d*x+c)*cos(d*x+c)^4+150*ln(((-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-cos(d*x+c)
+1)/sin(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(5/2)*sin(d*x+c)*cos(d*x+c)^3-150*ln(((-2*cos(d*x+c)/(cos(d*x+c
)+1))^(1/2)*sin(d*x+c)-cos(d*x+c)+1)/sin(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(5/2)*sin(d*x+c)*cos(d*x+c)-75
*ln(((-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-cos(d*x+c)+1)/sin(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^
(5/2)*sin(d*x+c)+392*cos(d*x+c)^5-496*cos(d*x+c)^4-216*cos(d*x+c)^3+384*cos(d*x+c)^2-96*cos(d*x+c)+32)*(a*(cos
(d*x+c)+1)/cos(d*x+c))^(1/2)/sin(d*x+c)^3/cos(d*x+c)^2

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec \left (d x + c\right )^{5}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^5/(a+a*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate(sec(d*x + c)^5/(a*sec(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

Fricas [A]  time = 2.37225, size = 1095, normalized size = 5.98 \begin{align*} \left [-\frac{75 \, \sqrt{2}{\left (\cos \left (d x + c\right )^{4} + 2 \, \cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}\right )} \sqrt{-a} \log \left (-\frac{2 \, \sqrt{2} \sqrt{-a} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) - 3 \, a \cos \left (d x + c\right )^{2} - 2 \, a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) - 4 \,{\left (49 \, \cos \left (d x + c\right )^{3} + 36 \, \cos \left (d x + c\right )^{2} - 4 \, \cos \left (d x + c\right ) + 4\right )} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{40 \,{\left (a^{2} d \cos \left (d x + c\right )^{4} + 2 \, a^{2} d \cos \left (d x + c\right )^{3} + a^{2} d \cos \left (d x + c\right )^{2}\right )}}, \frac{75 \, \sqrt{2}{\left (\cos \left (d x + c\right )^{4} + 2 \, \cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}\right )} \sqrt{a} \arctan \left (\frac{\sqrt{2} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt{a} \sin \left (d x + c\right )}\right ) + 2 \,{\left (49 \, \cos \left (d x + c\right )^{3} + 36 \, \cos \left (d x + c\right )^{2} - 4 \, \cos \left (d x + c\right ) + 4\right )} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{20 \,{\left (a^{2} d \cos \left (d x + c\right )^{4} + 2 \, a^{2} d \cos \left (d x + c\right )^{3} + a^{2} d \cos \left (d x + c\right )^{2}\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^5/(a+a*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

[-1/40*(75*sqrt(2)*(cos(d*x + c)^4 + 2*cos(d*x + c)^3 + cos(d*x + c)^2)*sqrt(-a)*log(-(2*sqrt(2)*sqrt(-a)*sqrt
((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) - 3*a*cos(d*x + c)^2 - 2*a*cos(d*x + c) + a)/(co
s(d*x + c)^2 + 2*cos(d*x + c) + 1)) - 4*(49*cos(d*x + c)^3 + 36*cos(d*x + c)^2 - 4*cos(d*x + c) + 4)*sqrt((a*c
os(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(a^2*d*cos(d*x + c)^4 + 2*a^2*d*cos(d*x + c)^3 + a^2*d*cos(d*x +
c)^2), 1/20*(75*sqrt(2)*(cos(d*x + c)^4 + 2*cos(d*x + c)^3 + cos(d*x + c)^2)*sqrt(a)*arctan(sqrt(2)*sqrt((a*co
s(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))) + 2*(49*cos(d*x + c)^3 + 36*cos(d*x + c)^2
- 4*cos(d*x + c) + 4)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(a^2*d*cos(d*x + c)^4 + 2*a^2*d*co
s(d*x + c)^3 + a^2*d*cos(d*x + c)^2)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec ^{5}{\left (c + d x \right )}}{\left (a \left (\sec{\left (c + d x \right )} + 1\right )\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**5/(a+a*sec(d*x+c))**(3/2),x)

[Out]

Integral(sec(c + d*x)**5/(a*(sec(c + d*x) + 1))**(3/2), x)

________________________________________________________________________________________

Giac [A]  time = 10.149, size = 331, normalized size = 1.81 \begin{align*} \frac{\frac{{\left ({\left ({\left (\frac{5 \, \sqrt{2} a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2}}{\mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )} - \frac{127 \, \sqrt{2} a}{\mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )}\right )} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + \frac{175 \, \sqrt{2} a}{\mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )}\right )} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - \frac{85 \, \sqrt{2} a}{\mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )}\right )} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{{\left (a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - a\right )}^{2} \sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}} - \frac{75 \, \sqrt{2} \log \left ({\left | -\sqrt{-a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + \sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a} \right |}\right )}{\sqrt{-a} a \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )}}{20 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^5/(a+a*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

1/20*((((5*sqrt(2)*a*tan(1/2*d*x + 1/2*c)^2/sgn(tan(1/2*d*x + 1/2*c)^2 - 1) - 127*sqrt(2)*a/sgn(tan(1/2*d*x +
1/2*c)^2 - 1))*tan(1/2*d*x + 1/2*c)^2 + 175*sqrt(2)*a/sgn(tan(1/2*d*x + 1/2*c)^2 - 1))*tan(1/2*d*x + 1/2*c)^2
- 85*sqrt(2)*a/sgn(tan(1/2*d*x + 1/2*c)^2 - 1))*tan(1/2*d*x + 1/2*c)/((a*tan(1/2*d*x + 1/2*c)^2 - a)^2*sqrt(-a
*tan(1/2*d*x + 1/2*c)^2 + a)) - 75*sqrt(2)*log(abs(-sqrt(-a)*tan(1/2*d*x + 1/2*c) + sqrt(-a*tan(1/2*d*x + 1/2*
c)^2 + a)))/(sqrt(-a)*a*sgn(tan(1/2*d*x + 1/2*c)^2 - 1)))/d